22 दिसंबर यानी 'राष्ट्रीय गणित दिवस',जो कि भारतीय गणितज्ञ श्रीनिवास रामानुजम् के जन्मदिवस पर प्रतिवर्ष मनाई जाती है, लेकिन जहाँ आज तक उनकी नोटबुक के काफी सवालों के हल नहीं हो पाये हैं, तो वहीं हिंदी के भाषा विज्ञानी और गणितज्ञ डॉ. सदानंद पॉल ने गणित के संख्याओं पर विचित्र शोध कर रखा है। आइए,मैसेंजर ऑफ़ आर्ट में आज पढ़ते हैं उनके शोध को--
डॉ. सदानंद पॉल |
गणित में नोबेल पुरस्कार (The Nobel Prize in Mathematics)
"डॉ. सदानंद पॉल की खोज "अभाज्य संख्याओं से अभाज्य संख्या निकालने का एक अद्भुत कोरोनाइट फॉर्मूला" को गणित में नोबेल पुरस्कार तुल्य"
"The Nobel Prize In Mathematics to an Unique Coronait Formula to extract prime numbers from prime numbers discovered by Dr. Sadanand Paul"
लॉकडाउन में 'कोरोना' के आतंक से स्वयं को बचते हुए एकांतवास हो चुका हूँ, तभी तो गणित की दुनिया के आतंकित संख्या या अब तो इसे 'कोरोनाइट संख्याएँ' (Coronait Numbers) भी कह सकते हैं यानी अभाज्य संख्याएँ (Prime Numbers) निकालने के नवीन-सूत्र (New Formula) की खोज मैंने (सदानंद पॉल) कर लिया है। ध्यातव्य है, सम्पूर्ण गणितीय संसार अभाज्य संख्याओं से सुपरिचित भी है, तो इनमें उलझने के कारण दु:परिचित भी है । यह तो तयशुदा सच है कि अभाज्य संख्याएँ 'विषम' संख्या होती हैं, किंतु 2 को छोड़कर; क्योंकि 2 एकमात्र अभाज्य संख्या है, जो सम है । वहीं सभी विषम संख्याएँ अभाज्य संख्याएँ नहीं होती।
Having escaped from the terror of 'corona' in lockdown, I have lived in seclusion, then only the terrorized numbers of the mathematical world or now it can also be called 'Prime Numbers. I (Sadanand Paul) have discovered the New Formula 'Coronait Formula' to extract prime numbers from prime numbers. It is important to note that the entire mathematical world is also familiar with prime numbers, so it is also familiar because of the confusion. It is certainly true that prime numbers are 'Odd' numbers, but excluding 2; Because 2 is the only prime number, which is even. At the same time, all odd numbers are not prime numbers.
मेरे द्वारा ईजाद किये गए फॉर्मूला यानी यह अभाज्य संख्याओं से ही अभाज्य संख्याओं को जानने व निकालने को लेकर है, यह लॉकडाउन की उपलब्धि कही जा सकती है । लेखन और गणित के प्रति रुचि है । अगर लेखन के कारण 'लेखक' कहला सकते हैं, तो गणितीय अन्वेषण के कारण 'गणितज्ञ' क्यों नहीं कहला सकता हूँ ! आइये, अभाज्य संख्या जानने या आगामी अभाज्य संख्या जानने के लिए मैंने कुछ प्रमेयों को तलाशा है, यह सूत्रबद्ध है:-
The formula that I have developed, it is about knowing and removing prime numbers from prime numbers itself, it can be called a lockdown achievement. An Interested in writing and mathematics. If writing can be called 'writer', then why can't I be called 'Mathematician' because of mathematical investigation ! Come, I have searched some theorems to know the prime number or the upcoming prime number, it is formulated:-
कंडिका- 1.
प्रथम से लेकर सभी क्रमिक अभाज्य संख्याओं (Consecutive Prime Numbers) को आपस में गुणा करते हैं, जहाँ तक के लिए अभाज्य संख्याओं को जानना चाहते हैं, किंतु अंक 5 को इस गुणन में शामिल नहीं करते हैं । याद रहे, प्रथम अभाज्य संख्या 2 अंक है। यथा-
2 × 3
2 × 3 × 7
2 × 3 × 7 × 11
2 × 3 × 7 × 11 × 13
2 × 3 × 7 × 11 × 13 × 17
2 × 3 × 7 × 11 × 13 × 17 × 19
Rule of Method - 1
Multiply all the Consecutive Prime Numbers from the first to the nearest, so far as the prime numbers want to know, but the digits do not include 5 in this multiplication. Remember, the first prime number is 2 digits. As-
2 × 3
2 × 3 × 7
2 × 3 × 7 × 11
2 × 3 × 7 × 11 × 13
2 × 3 × 7 × 11 × 13 × 17
2 × 3 × 7 × 11 × 13 × 17 × 19
कंडिका- 2.
कंडिका- 1 को लेकर प्राप्त गुणनफल में 1 जोड़ते हैं, तो यह अभाज्य संख्या के रूप में प्राप्त होता है। यथा-
2 × 3 = 6 +1 = 7 (अभाज्य संख्या)
कंडिका- 1 से उसी तरह :-
42 + 1 = 43 (अभाज्य संख्या),
462 + 1 = 463 (अभाज्य संख्या),
6006 + 1 = 6007 (अभाज्य संख्या),
102102 + 1 = 102103 (अभाज्य संख्या),
1939938 + 1 = 1939939 (अभाज्य संख्या)
Rule of Method - 2
If we add 1 to the product obtained by taking Rule of Method-1, then it is obtained as a prime number. As-
2 × 3 = 6 +1 = 7 (prime number)
In the same way as from Condica-1:
42 + 1 = 43 (prime number),
462 + 1 = 463 (prime number),
6006 + 1 = 6007 (prime number),
102102 + 1 = 102103 (prime number),
1939938 + 1 = 1939939 (prime number)
कंडिका- 3.
कंडिका-2 को लेकर गुणनफल में 1 जोड़ने पर परिणामी संख्या का इकाई अंक अगर 0, 5 या सम संख्या आए, तो यह सीरीज अभाज्य संख्या नहीं होंगे। इसलिए इसतरह के सीरीज को छोड़ आगामी सीरीज में आएंगे, किंतु क्रमिक अभाज्य संख्याओं के गुणन में किसी भी क्रमिक अभाज्य संख्याओं को गुणा करने से वंचित नहीं करेंगे। यथा-
2 × 3 × 7 × 11 × 13 × 17 × 19 × 23 = 44618574 + 1
= 44618575 में इकाई अंक 5 है, इसलिए यह भाज्य संख्या है।
अब चूंकि अभाज्य संख्या '23' के कारण गुणनफल और योगफल से जो संख्या प्राप्त होती है, वह संख्या 'भाज्य' होने के बावजूद हम अगले चरण (सीरीज) के लिए '23' नामक अभाज्य संख्या का उपयोग निश्चित करेंगे, उसे त्यागेंगे नहीं। यथा-
2 × 3 × 7 × 11 × 13 × 17 × 19 × 23 × 29 = 1293938646 + 1
= 1293938647 अभाज्य संख्या प्राप्त होती है।
Rule of Method - 3
Adding 1 to the product by taking Rule of Method-2, if the unit digit of the resulting number is 0, 5 or even, then it will not be a series prime number. Therefore, leaving this type of series will come in the next series, but will not deprive multiplication of any consecutive prime numbers in multiplication of successive prime numbers. As-
2 × 3 × 7 × 11 × 13 × 17 × 19 × 23 = 44618574 + 1
= 44618575 has unit digit 5, so it is a composite number.
Now since the number obtained from the product and sum is due to the prime number '23', we will decide to use the prime number called '23' for the next step (series), even if the number is 'divisible', not discard it. As-
2 × 3 × 7 × 11 × 13 × 17 × 19 × 23 × 29 = 1293938646 + 1
= 1293938647 The prime number is obtained.
कंडिका- 4.
इसतरह के सीरीज के सभी गुणनफल भाज्य संख्या होंगे, किंतु उपर्युक्त कंडिकाओं में उद्धृत शर्त्तानुसार गुणनफल में +1 करके 'अभाज्य संख्या' तलाशेंगे ! यथा-
2 × 3 × 7 × 11 × 13 × 17 × 19 × 23 × 29 × 31
= 40112098026 + 1 = 40112098027 अभाज्य सं. (PN) है।
2 × 3 × 7 × 11 × 13 × 17 × 19 × 23 × 29 × 31 × 37
= 1484147626962 + 1 = 1484147626963 (PN)
Rule of Method - 4
All the product of such series will be a composite number, but by finding the condition quoted in the above mentioned terms, find the 'prime number' by +1 in the product! As-
2 × 3 × 7 × 11 × 13 × 17 × 19 × 23 × 29 × 31
= 40112098026 + 1 = 40112098027 Prime No. (PN).
2 × 3 × 7 × 11 × 13 × 17 × 19 × 23 × 29 × 31 × 37
= 1484147626962 + 1 = 1484147626963 (PN)
कंडिका- 5.
कोई भी संख्या अभाज्य संख्या है या नहीं, इसे जानने के लिए सर्वप्रथम उस संख्या का वर्गमूल निकाल लीजिए । प्राप्त वर्गमूल संख्या में से अगर दशमलव के बाद अंक हो, तो उसे उपयोग में नहीं आते हैं, अपितु दशमलव से पहले जो संख्या आती है, उस संख्या को +1 कर जो संख्या प्राप्त होती है, उस संख्या सहित उनके नीचे की तमाम संख्याओं से भाज्य करने का प्रयास करते हैं । ज्ञात हो, सम संख्या तथा 0 और 5 'इकाई' अंक वाली संख्या स्वाभाविक है कि वह भाज्य होंगे । इसे छोड़कर अन्य सभी संख्याओं या अंकों से कटाने का प्रयास करेंगे, नहीं विभाजित होते हैं, तो वे संख्या अभाज्य होंगे, यथा-
37 का वर्गमूल = 6.0827625303 में 6 को रखते हैं, फिर 6+1 करते हैं, जो कि 7 प्राप्त होता है । अब 7 सहित उनके नीचे 1, 2, 3, 4, 5, 6 और 7 है, इन अंकों से 37 को विभाजित करने का प्रयास करते हैं, जो कि किसी से नहीं कटते हैं । विदित है, 37 सम संख्या भी नहीं है । इसलिए नियमानुकूल 1, 2, 4, 5, 6 से 37 को नहीं कटाते हैं, यह काम आसान के लिए भी है।
123 का वर्गमूल = 11.0905365064 में 11 रखते हैं, फिर 11+1 करते हैं, जो कि 12 प्राप्त होता है । अब 12 सहित उनके नीचे 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 और 12 है, इन अंकों से 123 को विभाजित करने का प्रयास करते हैं, जो कि 3 से कट जाते हैं । विदित है, 123 सम संख्या नहीं है । इसलिए नियमानुकूल 1, 2, 4, 5, 6, 8, 10, 12 से 123 को नहीं कटाते हैं, यह काम आसान के लिए भी है।
Rule of Method - 5
To find out whether a number is a prime number or not, first find the square root of that number. If the square root number obtained is numbered after the decimal, it is not used, but the number that comes before the decimal, by +1 the number that is received, including all the numbers below them. Let's try to divide. Let it be known that even numbers and numbers with 0 and 5 'unit' digits are natural that they will be divisible. Except this, we will try to deduct from all other numbers or numbers, if not divided, then those numbers will be prime, as-
Square root of 37 = 6.0827625303 Put 6 in it, then do 6 + 1, which is 7. Now they have 1, 2, 3, 4, 5, 6 and 7, including 7, trying to divide 37 by these digits, which are not cut off from anyone. It is known that 37 is not even even. So rules do not cut 1, 2, 4, 5, 6 to 37, this is also easy to do.
Square root of 123 = 11.0905365064, put 11, then 11 + 1, which is 12. Now they have 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12, including 12, trying to divide 123 by these digits, which are cut by 3. It is known that 123 is not an even number. So rules do not cut 1, 2, 4, 5, 6, 8, 10, 12 to 123, this is also easy to do.
कंडिका- 6.
आपवादिक स्थितियाँ कंडिका के साथ आबद्ध हो New PN के लिए नियम और शर्त्तें यथाप्रसंगश: सम्मिलित की जाएगी!
Rule of Method - 6
In exceptional circumstances, be bound with the condyle, the rules and conditions for New PN will be incorporated as soon as possible ! The above approach can also be called Coronait Formula.
'मैसेंजर ऑफ़ ऑर्ट' में आप भी अवैतनिक रूप से लेखकीय सहायता कर सकते हैं। इनके लिए सिर्फ आप अपना या हितचिंतक Email से भेजिए स्वलिखित "मज़ेदार / लच्छेदार कहानी / कविता / काव्याणु / समीक्षा / आलेख / इनबॉक्स-इंटरव्यू इत्यादि" हमें Email -messengerofart94@gmail.com पर भेज देने की सादर कृपा की जाय।
0 comments:
Post a Comment